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C 2 = # 2 ( x ) = m z - m  2 

C3 = #3(x)-" m3 - 3mxm2 + m~ 

C4 = #4(x)-  3#~(x) = m4 + 12m2m~-6m41 

- 4 m l m 3  - 3m~ 

d'ofl: 

L 2 iL 3 L 4 
q~(L) =exp iLC1 -- ~-  C 2 -  ~ C3+ ~-~ C 4 - . . .  

et en revenant ~ la fonction U = (exp - 2i~LeLSb) (L) 

C~L) = exp ( -- 2iTzLSb(eL) - 2rc2L2Sb2g 2 

+4i 3L3Sb3   . 

En ne conservant que les premiers termes du dh- 
veloppement en cumulant: 

C~L) = A~L) + iB~L) 

A~L)--~exp (-- 2z~ZL2Sb2g 2 + ~ 4 L g S b 4 ~  + ...). 
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Calculation of Dynamic Electron Density Distributions 
from Static Molecular Wave Functions 
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A procedure is described for calculating dynamic molecular densities, within the convolution approxima- 
tion, from rigid-body translational and librational thermal motions and static wave functions calculated 
with Gaussian basis orbitals. Fourier transformation of the librationally smeared wave function is shown 
to be equivalent to convolution of the molecular scattering factor with a distribution of orientations of the 
scattering vector. The proper thermal parameters to be applied to two-center products are well defined in 
this procedure. Static and dynamic molecular deformation densities are plotted for an extended-basis-set 
wave function of the azide ion, N~-, with rigid-body thermal parameters as determined in the crystal struc- 
tures of NaN3 and KN3. 

Introduction 

Since the electron density distributions determined by 
X-ray diffraction are time-averages over the thermal 
motion of a crystal, comparison of experimental 
results with theoretical densities calculated from 
static wave functions requires that either the thermal 
motions be deconvoluted from the experimental den- 
sities, or the theoretical densities be thermally smeared. 

Experimental densities may be deconvoluted (to 
some extent) by fitting charge-deformation and thermal- 
vibration parameters to the experimental measure- 
ments (Hirshfeld, 1976). However, in such a deconvolu- 
tion scheme, the uncertainties in the nature of the 

charge-density model are introduced into the experi- 
mental results. For quantitative comparisons between 
theory and experiment, thermal smearing of the 
theoretical density appears more desirable and is 
considered here. 

In the usual X-ray model, the atomic thermal param- 
eters are refined assuming independent thermal motion 
of the atoms. Within a molecule, however, the motions 
are highly correlated. In addition, uncertainty arises in 
the correct thermal smearing to be applied to the two- 
center products of the molecular wave function. 

Since the main part of the thermal motion in a 
molecular crystal is due to the translational and 
librational external modes, the proper treatment of 
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rigid-body motions is of major importance. The 
thermal smearing to be applied to two-center orbital 
products will be discussed here. The rigid-body libra- 
tional and translational parameters can be refined 
directly from the data (Pawley, 1972) or fitted to the 
individual atomic thermal parameters (Schomaker & 
Trueblood, 1968). 

Rigid-body smearing has been applied to a wave 
function of the acetylene molecule by Ruysink & Vos 
(1974). For Gaussian basis orbitals, the application of 
translational smearing is straightforward. For libra- 
tional motions, however, the expressions are more 
difficult to evaluate. The librational smearing applied 
to acetylene (Ruysink & Vos, 1974; Ruysink, 1973) is 
only valid for small librations. In this work, analytical 
expressions are derived which allow rigid-body libra- 
tional smearing to be applied to wave functions of 
Gaussian orbitals for any finite librations. 

Translations and librations 

The displacement Ulib, of a point at r, in a rigid molecule 
due to libration about an axis ¢o with a magnitude [0)1 is 
given by 

sino.) t 0 - - ( - 0 3  i l t  t r l t  o)  3 0 - -  /'2 Ulib 0) 
0)2 0)1 /'3 

-Jr- I - - C O S  2 2 0)20)3 / 0)2 0)10)2 - 0 ) 1 - 0 ) 3  
2 2 0)10)3 0)2(03 --  0)1 --  0 ) 2 /  (rl) 
× r 2 (1) 

r3 

where 0)1,0)2,0)3 and rl,r2,r3 are the components of 
and r. Expression (1) is exact .for any finite libration 

(Schomaker & Trueblood, 1968). 
The static density 0(r) corresponding to a wave func- 

tion of molecular orbitals q~(r) is, for a closed-shell 
system, given by 

N N ~, * 0(r)=2 qh(r)~pi(r)=2~ ~ CuiCviT.u(r-r,))(.~(r-rb) (2) • t /.zv 

where N is the number of occupied orbitals, the Cui are 
the molecular orbital coefficients, and the )~.(r) are 
basis orbitals. The dynamic molecular density Odyn(r) is 
obtained by a convolution of the static density with the 
probability distribution function P(u) for a displace- 
ment u. 

Qdy.(r)=f~oo(r--u)P(u)du. (3) 

Both translational and librational motions are assumed 
here to be harmonic and the correlations between 
translation and libration (the screw tensor S) are 

assumed to be zero. When the wave function is com- 
posed of Gaussian basis functions, convolution with 
the translational distribution function is easily per- 
formed (Stewart, 1968), since the displacements are 
identical for all orbital products in the molecule. 

Calculation of the smeared density due to libration, 
however, is more difficult since one needs to evaluate 
the convolution 

0lib(r) = 0(Rr)P(~)d~ (4) 
-co 

with (in the harmonic approximation) 

P(~) = (2~)- 3/21L- 111/2 exp ( - l ~ r L -  1~), (5) 

where L is the tensor describing the mean square 
amplitudes of libration of the molecule. R is the rota- 
tion matrix corresponding to the rotation to such that 
Rr = r + Uli b- 

Ruysink & Vos (1974) were able to obtain an 
approximate analytical expression for (4) by assuming 
small librations (0)i0),~0, sin 0)~0)). Exact expres- 
sions can be obtained for the librational smearing by 
considering the Fourier transform of the smeared 
density. The coherent scattering factor for the librating 
molecule is given by 

flib(h) = f ~ coQlib(r) exp (2rcihrr)dr. (6) 

Since R-1 = R r, one obtains from expression (4) 
oo t~ t~ 

flib(h): | ~0 (Rr ) exp  (2~ihrRrRr)drP(t~)dt~. (7) 

--O0 
Substituting r ' =  Rr gives 

oo 

flib(h) = f ~ ( r t ) e x p  [2~'~i(Rh)Tv~drtP(~)d(~l) (8) 

--O0 
with d r '=dr ,  since R is unitary and 

flib(h)=f~cof(Rh)P(o~)do~ (9) 

where f(h) is the static molecular scattering factor. 
Thus, the dynamic scattering factor may be obtained 
by convolution off(h) over the distribution of orienta- 
tions of h with respect to the molecule. 

For s-type Gaussian basis orbitals centered at r, 
and rb, the product 

)~,(r)xb(r) = exp (-- A] r -  r~] 2) exp ( -  B[r--rbl 2) (10) 

can be reduced to a single center 

~:,(r)~:b(r) = exp [ - ( A  + B ) [ r -  r~l 2] 

( AB Ir,--rb[2) (11) × exp A + B 

where the 'center of density' re, is given by 

L = (Ar, + Brb)/(A + B). (12) 
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The molecular scattering factor for s-type basis or- 
bitals is given by 

S, ,~ fO0 fstat(h) = CaC b Za(r)zb(r) exp (27rihTr)dr 
--GO 

( AB ) (  ~ ~3/2 
= f a g  exp Z + n  Ira-rbl2 \ ~ }  

~21hl2,~ 
xexp ~ - - B j  exp (2gihrL) (13) 

where the C, and Cb include the molecular orbital 
coefficients and normalization factors. The only term 
in (13) which depends on the direction of h is 
exp (2rcihrrc). Substituting (13) into (9) and using 

(Rh)Tr = hTRTr = hTr _ (Rh)TUlib 

where U.b is the displacement due to libration, gives for 
the librationally averaged temperature factor: 

s ;7 fayn = f~ilt(Rh)P(o)do 
GO 

S,$ ;o0 
=f~tat(h) exp [ -  2rci(Rh)rU~ib]P(o)do (14) 

--OO 

where the superscript c indicates that the displacement 
is for the point re. Note that the integral in (14) is the 
librational temperature factor multiplied by the 
static scattering factor. The librational temperature 
factor, derived by Pawley & Willis (1970), is given by 

f~ooexp(2nihru)p(to)d(o 

=exp {27zih1(-½02- ½03)rl +. . .  +. . .  

(first cumulant) 
2 2 1 2 +4r~ h l ( - - g O 2 r  3 1 2 - - ~ 0 3 r 2 ) + . . .  + . . .  

+4rc2h2h3(~lr2r3)+... +...  
(second cumulant) 

2 2 1  + 8x3ih3[(02r 2 + 03/'2)52-/'1] -t-...-Jr'... 
3 . 2  2 1 2  +8TO zhlh2103(¢r2-r 2) 

+(0203 - 03f21 + 0102)½r2]r2 + ... + ... 
3 . 2  2 1 2  +8re thxh3102Qr3-r 2) 

-}- ( 0 2 0 3  + O301 -- ~2102)½r2]r3 + . . .  + . . .  
+ 81~3ihlh2h3[-(02~3 + 0 3 0 1  --[- O102)rlr2r3] } 

(third cumulant) (15) 

where O1,O2,O3 are the diagonal elements of the 
librational tensor after a transformation of the coor- 
dinates to diagonalize L, and h~,h2,h3 and rl, r2,r3 are 
the components of h and rc in the transformed system. 

Thus, the correct librational motion to assign to the 
two-center product, xa(r)xb(r), is the motion of the 
center of density r~ as defined in (12). For Gaussian 
lobe basis functions in which p-type and higher basis 
functions are constructed from s functions displaced 

from the nuclei (Whitten, 1966), (14) can be applied 
to the entire wave function. 

For Gaussian basis functions of the type 

Za(r)=(X--Xa)m(y--ya)n(z--Za) p exp (-- Air-- r.[ 2) (16) 

the scattering factor for a two-center product is given 
by (Miller & Krauss, 1967) 

a, b ~ oo 
fstat(h) = CaC b Za(r)zb(r) exp (2rcihrr)dr 

--CO 

AB (ra_ rb)2 =CaCbexp A+B \ \ J  

x exp ( rcZlhl2'] 

x exp (2nihrrc)F~,b(ha)Fra, b(h2)FZ, b(h3) (17) 

where 

ma ( ; a )  m~o(; ) F'~,b(h,)= ~ (Xc--Xa) ma-tt b (Xc__Xb)mb -v 
/~=0 v= 

and the Hm(x) are Hermite polynomials of order m. 
Because of the additional dependence of h, when 

(17) is substituted into (9) the static scattering factor 
cannot be factored out as it was for the s,s product in 
(14). For example, for the product px, S, 

[ 
dyn -- J_  oofstat P(o)d¢o 

( AB t (  7./: ~3,2 
=CoQ exp A +B Ira--rbl2 \AT-B] 

x exp ( rc21hl2"~ 
\ 

+ B )  I / 2 H I ( A + B ) I / 2 )  +Xc--Xa] 

x exp [2~i(Rh)Trc]P(co)dco 

where h' = R 

Let / 
Ka, b(h 2) = CaCb exp ( - - -  

\ 
AB [ra_rb0 2 

A+B 
( ~ "~3/2 

x \ ~ - ~ ]  exp ( -  - -  
n2[h[2~ 

(18) 

for convenience. Using a series expansion for (sin co)/o) 
and (1 - cos  co)/co 2 in (1) gives 

h' h1-093h2+(02h 3 1 2 1 2 = - ~coah 1 - ~c02h 1 
1 1 +~(_olc02h2 +~2c01c03h 3 + . . .  (19) 

AC 33A-6 
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With Hl(x)=2x, one obtains for (18), 
o o  

¢ P x ,  S _ _ j  statS J-o~ exp ( _ 2nih rU~ib)P(tg)d ~ Jdyn  __ ~cPx, 

-Ka,  b(h 2 co3h2 A + B  
- - O 0  

x exp (-2nihrU~ib)P(~o)do~ 

+ K~, b(h 2) (°2h3 (A + B) 
- - O O  

x exp ( - 2nihru~ib)P(to)dto - . . . .  (20) 

Note that the first term in (20) is the same as (14). 
The remaining terms may be considered as corrections 
(normally small) which account for the change of 
orientation of the basis orbitals with libration. Expres- 
sions for these integrals are similar to (15) and can be 
derived in the same manner. In the derivation, terms of 
order co" with n > 2 have been neglected. 

The smeared density is obtained from the total 
dynamic molecular scattering factor by the usual 
Fourier transform 

1 
Qdyn(r) = ~ ~fdyn(h) exp (-- 2nihrr). (21) 

Since a finite number of terms are included in the 
summation, Qdyn(r) will include series-termination 
error. This is desirable, however, for comparison with 
experimental densities which also include series- 
termination errors. 

Internal modes 

The density averaged over the internal vibrational 
modes, in the Born-Oppenheimer approximation, may 
be obtained from 

L0int(r) = [Q(r, R 1, R2,  • •., RN) 

¢ l J  

d 
× P(R1,R2,...,RN)dRI,R2,...,RN (22) 

where P(R~,...,RN) is the distribution function for the 
R~,...,RN nuclear position vectors. Evaluation re- 
quires calculating the wave function at a large number 
of internuclear geometries. 

When the wave function is available at only the 
equilibrium geometry, further approximations must 
be considered. It has been found (Coulson & Thomas, 
1971) in the evaluation of(22) for the H 2 molecule that 
density near the nucleus follows the nuclear motions 
and thus would be well approximated by a convolution 

~0int(r) = fo(r-u)e(u)du. (23) 

The convolution approximation assumes that the 
wave function does not change as a function of the 
nuclear positions. The correct thermal smearing to be 
applied to the two-center terms is not obvious in this 
approximation, however. 

In treating the internal modes of acetylene, 

Ruysink & Vos (1974) avoided this problem by em- 
ploying the convolution 

O,nt(r)=ffXa(r-u3xb(r-u~)P(u3P(u~)duidu~. (24) 

This approach has recently been criticized by Scheringer 
& Reitz (1976) as being inconsistent with the Born-  
Oppenheimer approximation since, in the limit of 
independent vibrations, it reduces to a smearing of the 
individual orbitals rather than the orbital product. 
It should be noted, however, that any approach in 
which a wave function calculated at a single geometry 
is used will be inconsistent with the Born-Oppen- 
heimer approximation. The ultimate criterion for 
judging the validity of an approximation should be its 
ability to reproduce the results of (22). 

As shown above, the correct thermal smearing to be 
applied to a two-center product for librational rigid- 
body motion is the motion of the center of density 
L. As the motion of rc is obviously also appropriate for 
translational rigid-body smearing, it would appear 
to be a reasonable approximation for the treatment of 
internal vibrations as well. For a product z,(r)zb(r) in 
which the nuclei are displaced by u, and Ub respectively, 
the displacement of the center of density would be 

Uc = (Aua + BUb)/(A + B) (25) 
and in the convolution approximation 

~tb(r) = fa°'b(r- uc)e(uc)duc. (26) 
Ruysink & Vos (1974) have also considered the 
dependence of the normalization factors of the mo- 
lecular orbitals on geometry. Rather than include the 
normalization factors in the convolution, they used an 
average over all geometries. Whether the change in 
normalization factors can be ignored, taken as the 
average, or must be included in the convolution cannot 
be answered without further testing of (24) and (26) 
with Born-Oppenheimer results. 

Results  

Dynamic densities have been calculated for the azide 
ion, Na,  from a static molecular wave function and the 
librational and translational thermal parameters as 
determined in the crystal structures of NaN3 and KN3. 
The molecular wave function was calculated using an 
extended basis set of Carteslan-Gausslan basis or- 
bitals as in (16). The rigid-body thermal parameters 

Table 1. Rigid-body thermal parameters 
NAN3: Molecular axis along z (3 in space group R3m) 

Ull (=  U22)=0"0248 A2 L11 (=L22)=0"047 rad 2 
U33 = 0"0204 Laa = 0"0 

KN3: Molecular axis along x, [(1,1,0) in space group I4/mcm], 
z along c 

UI x =0"0182 .~2 L11 =0"0 rad 2 
U22 =0"0155 L22=0.0110 
U33 = 0.0240 L33 = 0-0062 
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\ \ x  • 1 s ,  - ' ' /  

Fig. 1. Static deformation density of N~-. Contours  at 0.10 A -a, 
negative contours dashed. Large negative contours near the 
nuclei have been omitted. 

t,.0.0000 ,J 
C3 _ . ~  
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. . . . . . .  

• 0813  X .4187 

Fig. 2. Dynamic deformation density calculated with rigid-body 
thermal parameters of the N3 ion as found in the crystal structure 
of KN3. Contours  at 0"05 e A-3. 
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used in the calculation are given in Table 1• Details of 
the theoretical calculation and comparison with exper- 
imental densities will be given elsewhere (Stevens, Rys 
& Coppens, 1977a, b). 

The internal vibrations have been neglected. Since 
the amplitudes of displacement due to the internal 
modes are small, their contribution to the total thermal 
motion is very small at room temperature (Scheringer, 
1972), though their relative importance may increase 
when the amplitudes due to external modes are 
reduced by cooling of the specimen. In addition, when 
the rigid-body thermal parameters have been obtained 
from diffraction data, the translational and librational 
parameters will include, to some extent, the internal 
vibrations• 

In Fig. 1, the static difference density 

A Qstat = Cstat(molecule) - Qstat(atoms) (27) 

is plotted for the theoretical density of N3.  Molecular 
scattering factors of the thermally smeared density are 
calculated from (9) at h,k,  l values corresponding to 
each of the experimental intensity measurements of 
NaN3 and KN3. The series-terminated dynamic 
density 

A ~dyn : Qayn(molecule) - ~dyn(atoms) (28) 

is obtained by the Fourier summation 

1 x~ / ~cmol ,eatoms~ dQdyn = V ~ l, J d y n - - J d y n  I exp (--2rtihrr). (29) 

The result for KN3 is plotted in Fig. 2 and for NaN3 
in Fig. 3. In both cases the resolution limit, (sin 0/2)max, 
is about 1"20 A-1 

To assess the importance of the higher-order terms 
which occur in (9) when the orbital products are not of 
the s,s type, as in (20), the calculation on NaN3 has 
been repeated neglecting all but the first term in the 
orbital product scattering expressions. The dynamic 
difference density calculated in this manner is very 
close to the correct treatment. The maximum dif- 
ference, 0-03 e /~-3 ,  is less than the estimated exper- 
imental error. Because of the additional dependence on 
09" for an orbital product of order m, (where m is the 
sum of the l quantum numbers of the atomic orbitals), 
the correction terms of higher-order orbital products 
are more sensitive to the magnitude of the libration 
than the s,s products would be, but are generally small 
when the librations are small. 

Calculation of the dynamic density has also been 
repeated neglecting the first and third cumulant terms 
in (15). The differences are again found to be small, 
<0.02 e A -3, provided the same terms have been 
neglected in calculating f~oms in (29). Of course, the 
extent to which either of these simplications is valid 
depends on the magnitude of o~, the distance from the 
center of libration, and the magnitude of h. The 
neglect of higher-order terms will also become more 
severe when higher angular terms such as d-orbitals 
are more heavily populated. 

AC 33A-6" 
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J 

- .  4000 X .4000 

Fig. 3. Dynamic deformation density calculated with rigid-body 
thermal parameters as found in NAN3. Contours at 0"05 e A-3. 

Conclusions 

We have shown that the time-averaged molecular 
electron density distribution for rigid-body librations 
can b e  obtained by a convolution of the molecular 
scattering factors with the distribution of orientations 
of the scattering vector h. The correct libration am- 
plitude to be applied to two-center orbital products 
is found to be the motion of the center of density point, 
re. Starting with a static molecular density, the dynamic 

density smeared by rigid-body translations and libra- 
tions can be obtained for any magnitude of T and L. 

The dynamic density obtained in this manner con- 
tains series termination effects, but for extended data 
sets the effects will be relatively small when the dif- 
ference density, AQdyn, is calculated. In addition, if the 
object of calculating the dynamic density is for com- 
parison with X-ray diffraction results, which are also 
obtained from a finite series, then series-termination 
effects may be included in the theory to the same 
extent as in the experiment. Although the results given 
here are for a linear molecule, the method is applicable 
to molecules of general geometry. 

Support of this work by the National Science 
Foundation is gratefully acknowledged. 
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Magnetic Properties of Crystals: An Alternative Method 
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A method, based on the group-theoretical concept of the factor groups contained in a composition series, 
of obtaining the number of the constants required to describe a magnetic property in respect of the 90 
magnetic point groups is described. The advantage of the method presented here is that one can enumer- 
ate simultaneously the constants needed for the description of the magnetic property for all the point 
groups involved in a composition series and their magnetic variants. Piezomagnetism is worked out in 
detail for one composition series. 

& Suryanarayana (1949), Bhagavantam & Pantulu 
1. Introduction (1964) and Bhagavantam (1966) for enumerating phys- 

The character method developed by Bhagavantam ical constants needed for the description of various 
(1942) has been successfully applied by Bhagavantam physical properties in respect of the 90 magnetic sym- 


